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Abstract 

We present an individual-based, spatially- explicit model of the dynamics of a small mam- 
mal and its resource. The life histories of each individual animal are modeled separately. The 
individuals can have the status of residents or wanderers and belong to behaviorally differing 
groups of juveniles or adults and males or females. Their territory defending and monogamous 
behavior is taken into consideration. The resource, green vegetation, grows depending on sea- 
sonal climatic characteristics and is diminished due to the herbivore’s grazing. Other specifics 
such as a varying personal energetic level due to feeding and starvation of the individuals, mat- 
ing preferences, avoidance of competitors, dispersal of juveniles, as a result of site overgrazing, 
etc. are included in the model. We determined model parameters from real data for the species 
Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat 
without predators or other species competitors. The goal of the study is to find the relation 
between size of habitat and population persistence. The experiments with the model show the 
populations go extinct due to severe overgrazing, but that the length of population persistence 
depends on the area of the habitat as well as on the presence of fragmentation. Additionally, 
the total population size of the vole population obtained during the simulations exhibits yearly 
fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one 
observed in prairie vole field studies. 

Keywords :complex i t y ,  population dynamics, self-organization, population waves, individual-based 
models 

3 



1 Introduction 
The goal of this work is to study the effect of habitat size and the role of fragmentation on the pop- 
ulation dynamics of a herbivore species. A herbivore interacts with its spatial environment through 
the resource it utilizes, i.e. by reducing the density of vegetation, transforming it into energy, and 
meeting its energetic needs to survive. Habitat size is affected and habitat fragmentation occurs as a 
result of human activities such as petroleum exploration and development. The reduction of habitat 
size leads to lower population sizes but may lead to increased population densities and overutilization 
of the resource and possibly to extinction of the population. The effect of fragmentation of various 
types is not clear [ll, 3, 13, 121. 

Biological systems are made up of systems themselves. Interacting biological entities such as 
animals, bacteria, etc. require the use of suitable modeling tools that take into consideration the 
heterogeneities of the individual entities and their environment and are able to incorporate both 
deterministic and stochastic effects. Differential equations deal with smooth quantities rather than 
aggregates of individuals and are not immediately suitable to adress the above requirements. The 
most suitable available now modeling technique is individual - based simulations. 

We have constructed an individual - based model of herbivore-environment interaction which we 
parametrized for the species Microtus ochrogaster (prairie vole). We based the rules and numeric 
data of the model on a variety of literary sources. We have taken into consideration the climatic 
dependence of both vegetation growth and mammal breeding and define the local rules of movement 
of each individual to be driven by presence of resource and avoidance of competitors of the same 
gender. The spatial environment is represented as consisting of square cells with the size of the home 
range of M. ochrogaster. The population is subdivided into classes of wanderers and residents of 
spatial cells, which, together with the avoidance of same-sex competitors, models territorial behavior, 
a feature common to many species including the prairie vole. The female residents produce offspring 
if some additional conditions are met (energetic needs covered, enough generation time lap, presence 
of a male in the same cell). Individuals consume resource which replenishes itself due to growth 
dependent on precipitation and temperature. 

The density of population time series produced as an output of the simulations resemble the ones 
observed in various vole population studies. It is a long-time puzzle ... 

The emergent dynamics of the population in an enclosed habitat occurring as a result of the 
locally heterogeneous interactions between herbivores and resource has an interesting wave-like be- 
havior in some intervals of time, while in others the patterns appearing as the population waves 
coalesce and disappear, are very irregular. 

The effect of habitat area reduction was studied and showed that on smaller areas the population 
goes extinct for a shorter period of time than on larger ones. The simulations we did show that 
reducing habitat size reduces the time to extinction. A different set of simulations with removing 
patches of the habitat show that habitat fragmentation can have, in fact, a beneficial effect on the 
persistence of a population by reducing the amplitude of the fluctuations. 

This paper is an attempt to bridge a gap between the ecological and mathematical approach 
to an individual- based model. We recognize that there is no existing theory of individual-based 
models. At the same time this approach is very appropriate for modelling complex systems and 
especially ones with spatial dependence. 

The structure of the paper is as follows. In Section 2 we give an abstract formulation of an 
individual-based model as a nonlinear map. In Section 3 we summarize some of the population data 
we have gathered from the ecological literature. Section 4 is dedicated to a formal description of the 
model. We have made an attempt to write the mapping functions in a mathematical form and then 
briefly describe them in common language as is usually done in the ecological literature. In section 
5 we describe the results of some simulations. 
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2 Individual-based models as generalized discrete dynamical 
systems 

Individual-based models (IBM) are discrete computational simulations which explicitly model large 
numbers of individual, heterogeneous entities interacting with each other and their environment. 

IBM are the only available modelling approach that can meet the needs of a fast growing number 
of biological applications characterized by processes that incorporate entities with a large number 
of possible states changing in time or space due a large number of possible mechanisms. The 
simulations make it possible for the scientist to carry out virtual experiments and test hypotheses 
based on available experimental and empirical data. 

The IBM approach has certain advantages in comparison with partial differential equations mod- 
els. They are summarized as follows. 

a) IBM are by definition a natural tool f o r  modelling systems made of systems. Each individual 
is represented as a system of interacting components such as age, energetic budgets, location, status, 
etc. and these individual systems interact with each other in ways depending on their own state and 
the state of the environment. 

b)  Possibility to  work with a large amount of independent variables. In IBM the variable attributes 
of the entities play the same role as the independent variables (time, spatial coordinates, etc.) in 
PDEs. Solving PDEs with more than 4 variables (t,x,y,z) is a challenging task even today. IBM can 
incorporate dozens of independent variables and make the models much more realistic. 

c) Straight-forward model formulation. Models are based on rules observed in the real system to 
be simulated and are readily understandable by life scientists. 

d)  Versatility. IBM give an easy way to incorporate both deterministic and stochastic components 
in the model. 

e) The non-averaged behavior of the output allows for  observing phenomena that would be im- 
possible with PDEs but closer to  reality. Shnerb et al, [37] find that in conditions in which the 
continuum approach would predict the extinction of all the population, the slightest microscopic 
granularity insures the emergence of macroscopic localized sub-populations with collective adaptive 
properties which allow their survival and development. This is observed in our simulations as well. 

IBM are getting increasing popularity in the ecological community ([2, 6, 21, 26, 29, 33, 38, 40, 
41]), but are readily extended to a finer scale (microbial communities [25, 201) or a slightly different 
setting (epidemic simulations [14]). 

In an attempt to present in a formal language the essence of an IBM, we can describe it in 
mathematical terms as a discrete-time highly-dimensional nonlinear map. 

IBM resemble discrete dynamical systems which have a relatively well developed theoretical 
foundation. However, IBM are a more general type of a map than dynamical systems and therefore, 
the theoretical framework for these is still to appear. In a discrete dynamical system x(n + 1) = 
F(x(n)), where x(i) E R", the dimensions of the prototype and the image are the same and the 
map F is a deterministic (usually) continuous relation. 

An IBM is a nonlinear map which transforms a certain amount of matrices of M of certain (high) 
dimensions Ni(n) x mi into (the same amount of) matrices whose dimensions are usually different. 

The matrices are formed by the vector individuals. More specifically, at time t = n there are 
Ni(n) individuals, i = 1, ..., I of I different types. The individuals are vectors Ai whose components 
are the individual data: 

Ai = (data: , ...., datah)T, i = 1, ..., Nj. 

At time t = n + 1 a map @(n) converts Mi(n) into Mj(n + 1) which is a matrix of dimensions 
Ni(n + 1) x mi. These dimensions can be different from Ni(n) x mi. 

@(n) : Mj(n) ---+ Mi(n + 1). 
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The matrices’ dimensions vary since the number of entities at each time step is variable (are born 
or die at various moments). This differentiates IBM from discrete dynamical systems, as they have 
a k e d  number of equations across time. Additionally, the map 9 can contain random parameters 
or be entirely deterministic. 

If no random parameters are present, and the nature of the problem is such that all matrices 
Mi(n),i = 1, ..., Z;n = 0,1, ... are contained in some finite dimensional space (Le. Ni(n) and mi 
are bounded from above for all n), one could put the IBM into the form of a discrete dynamical 
system and hopefully apply some of the existing theory ([23]). One could expect the existence of 
attractors and thus, see the formation of specific patterns governing the dynamics. In the model and 
simulations presented in this paper we do observe the spontaneous formation of wavelike patterns 
and phenomena resembling turbulence. 

3 The prairie vole: experimental and empirical data 
Some of the vole data were collected through surveys with no experimental manipulation. We call it 
empirical data. Data collected through enclosure and removal experiments are actual “experimental” 
data. 

Demographic and physiological data. The data on life expectancy of the prairie vole is very 
inconsistent because the measurements depend on predation at the specific region as well as climatic 
factors. The prairie vole mean life expectancy was established by Getz et al. [18] to be between 
50 and 80 days depending on the season. Animals born in summer and autumn had higher life 
expectancy (61-80 days) than ones born in winter and spring (41-50 days). However, some voles 
born in the summer or autumn season live up to 450 days, while these born in the winter or spring 
live up to 120-150 days [18]. 

Voles are considered adults if they have reached 30 days of age or approximately 30 g weight. 
An adult prairie vole produces in average 3-5 offspring per litter and 3-4 litters per year. The 

gestation period is 21 days and is approximately equal to the generation time (period between 
pregnancies ), [16, 341. 

The daily food intake depends on the quality of the food but for green (undried) grass it can be 
estimated as follows. Sawicka-Kapusta et al [36] estimates for the caloric value of biomass of various 
fodders, for grass being 0.85-0.98 kcal/g biomass. Bradley [5] calculates the daily food intake of M. 
ochrogaster to be approximately 600 cal/g body weight. For 30g body weight then the daily caloric 
requirement is 18 kcal. Using the data from Sawicka-Kapusta et al. [36] we obtain that the dailly 
grass intake for an adult vole will be about 20 g. 

Climatic dependence. Breeding shows seasonal dependence and is defined as between February 
and November. Rose and Gaines [34] report no breeding in December and January and even through 
April in one of the years, while Krebs et a1 [24] report very low percentage of breeding females in 
November- January and peaks of breeding in August, September and October. Keeping in mind 
the bioenergetics of these small mammals, which spend most of the produced metabolic energy for 
maintaining their body temperature, these reports are reasonable. 

The home range. Species that exhibit site fidelity have a mean amount of territory that they 
move around daily and defend, the home range(HR). HR size has been demonstrated to be related 
to the energetic needs of the mammal, [28]. Thus, it is gender and season dependent. The HR size 
has been reported to be somewhere between 10 and 50 m, [l, 15, 391. 

Factors governing population density. It is known from observations [18], [24] that highest vole 
population densities occur in the late autumn (October, November), that densities decrease dras- 
tically in January-March, the lowest densities usually occurring in March and then start steadily 
increasing until late autumn. 
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The population density of the prairie vole depends on the quality and quantity of vegetation 
as well as on the presence of sympatric herbivore species and/or predators. Food quality is very 
important for the population dynamics of the prairie vole. For example, alfalfa has a higher nutrition 
value than tall grass [8]. The maximum vole density in tallgrass prairie as recorded in [17] was 90/ha 
while the mean density was 7/ha showing high variability during a 25 year study. Cole et al [8] report 
maximum density 38/ha and 10/ha respectively in a next year for the above mentioned types of 
vegetation. 

Experiments on enclosed grids show that dispersal plays an important role in population density 
regulation. Density can become quite high in enclosed areas. Krebs et a1 [24] compared fenced and 
unfenced grids and observed a rapid increase in population density in the fenced case, which led to 
overgrazing. A very interesting experiment of introducing 18 prairie voles in an empty fenced plot of 
0.8ha led to an extreme density of 494 vole/ha (395 voles in the plot) after 7 months. Consequently 
the vegetation was overgrazed and the population fell to 11 voles in early April when it started to 
increase steadily. 

Absence or presence of a predator also plays an important role on population density regulation. 
Desy and Batzli [lo] conducted experiments on enclosed plots with mixed vegetation including blue 
grass and observed maximum density of 550/ha on enclosures with no predators and added food, 
while in enclosures with no supplemented food and with predators, the density was stable at about 
90/ha. 

Microtine species, one of which is the prairie vole species, exhibit seasonal and multi-annual 
population size fluctuations. The physiology of the vole, a very small mammal, which needs an 
enormous amount of energy (relative to its body mass) to maintain constant body temperature; is 
clearly seasonally dependent. At low temperatures, the vole has to diminish or abandon certain high- 
energy-consuming activities in order to survive. Breeding (as seen above), deaths due to predation 
and life expectancy are seasonally dependent phenomena. Several authors have reported multiannual 
fluctuations in population density with occurring peaks with frequency 2-4 years. Rose and Gaines 
[34] note that microtine cycles vary from 2 to 5 years in duration, with many having 3-4 year intervals 
between peaks. Getz and Hofmann [17] report high-peak densities appearing with periods of 4.3 
years and secondary peaks at 2.1-2.4 years on three different habitats and that these fluctuations are 
synchronized for the three different habitats. The periodicity of the fluctuations does not depend on 
the external manipulations of the habitat (burning of tall grass, mowing of blue grass and alfalfa) 
but their amplitude does depend on the quality of food (alfalfa has the highest caloric quality, tall 
grass the lowest) and are positively correlated with it [19]. Cole and Batzli [SI also note that food 
availability may influence the amplitude of fluctuations but not the periodicity of the cycle. The 
multi-annual population size oscillations of the microtine species is a continuing puzzle to ecologists. 

There are various hypotheses and studies related to them concerning vole population fluctuations. 
Some authors study the connection of population density and juvenile survival (Krebs et a1 [24], Getz 
et a1 [18]), while others put forward as a possible cause changes of food quality, [SI. 

Social relations. Getz and McGuire [l6] show that the majority of single males are wanderers 
while a considerably smaller proportion of single females wander. Wanderers frequently visit the 
nests of pairs but are kept away by the male [27]. Unrelated adults join communal groups only 
if they include already grown offspring male [27]. New pairs were formed after the winter period 
from surviving individuals mainly from different social groups [16]. Most of the new pairs formed in 
summer-autumn were made from two wandering individuals. 

Prairie voles are monogamous animals. Paired males and females cohabit a nest and a home 
range, [16]. McGuire and Getz, [27] find that paired males exclude nonresident males from the areas 
around their nests. This was also confirmed in [16]. 

Territory specificity and defense. There is little overlap in use of space by social groups even 
at high population densities, [27]. Spatial behavior limits interaction between members of adjacent 
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social groups. Jacquot [22] found that vacant territories were fast occupied. Density of population 
was positively correlated with the time necessary to emigrate. Female prairie voles immigrated in 
response to vacant territories and not to potential mates. Males also immigrated in response to 
vacant territories. It is generally accepted that males show preference to territories with present 
females. 

4 Description of the model 
4.1 The variable matrices 
At each time moment n the total amount of present animals is Nl(n) .  The animal objects 

A1 (n> , -..*, AN1 (n) (n) 

possess the following m = 9 variable data: coordinates of the current location of the animal nrow 
and ncol; age age, gender gen (this is a variable because animal Ak(n) and animal A k ( Z )  are in 
general different objects at different times n and 1) where gen = 1 if the animal is male and 2 if 
female; status stat (which can be wanderer or resident); time since last pregnancy r (defined as 
0 for males and a positive value for females); energetic budget enbudget: a variable reflecting the 
energetic status of the animal and important for its survival. Finally, each animal object is given a 
variable remove (defined as 0 or l), which indicates whether the animal is dead (remove = 1) and 
will be removed from the matrix and a variable birth indicating whether it gives offspring at time n 
(birth = 1) or not (birth = 0). 

Thus, at any time moment n the animal objects with their data represent a N l ( n )  x 9 matrix, 
the matrix of animal objects. 

A= 

' nrowl 
ncoll 
age1 
gem 
stat1 
71 
enbudget1 
remove1 , birth1 

nrow2 
ne012 

Sen2 
stat2 

r2  
enbudget2 
remove2 

birth2 

age2 

... nrowN1 

... ageNi 

... genNi 

... ncolN, 

... S t U t N ,  

... TNi 

... enbudgetiv, 

... removeN, 

... birthNl 

N l ( n )  can take very big values depending on the amount of spatial cells (area size) we consider. 
In a typical simulation PI1 reaches several hundred thousands up to a million. The lower bound 
is naturally 0, but in general, even if N1 does not become so small, it is highly variable, falling to 
several thousands in the winter months. 

All animal objects share constant data characteristic of the species: average daily food intake 
DFI ,  life expectancy LE, maturation age M A ,  generation time GT, litter size LS. The values of 
these quantities are taken to be in the ranges outlined in the previous section. Additionally, the 
following controlling parameters relevant for the energetic budget enbudget are introduced: M E B ,  
maximum energetic budget, MeunEB, mean energetic budget, J E B ,  juvenile energetic budget. We 
explain the meaning of the controlling parameters in a following subsection. 

Space is represented as a collection of a constant number N2 of square cells, CI, ... CAT=, each 
one with an area roughly equal to the home range of the herbivore. The location of each cell is 
represented by two coordinates (row and column). The cells are individual objects possessing the 
following 5 variables: quantity of vegetation veg in the cell, total number pop of animals in the cell 
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(juveniles, male and female), number of present male herbivores mpop, female herbivores fpop, and a 
variable p indicating whether the spatial cell has been polluted and therefore should be removed (Le. 
it has been developed, polluted or otherwise rendered uninhabitable). Thus, at any time moment n 
the cells with their data represent a N2 x 5 matrix, the matrix of cell objects. 

C =  

x 

(4-2) 

Note that we address the spatial cells in two different ways: we order the cells sequentially as 
C1, ... C N ~ ,  and we also address them by using their coordinates when defining an animal object. We 
need to have a way to link the coordinates with the cell. 

Thus, given row and column coordinates, nrow, ncol, let #(nrow, ncol) be a function whose value 
is the sequential number of the cell with coordinates nrow, ncol. Otherwise said, C#(nrow,ncol) has 
coordinates (nrow,ncol). An animal object Aj will then be located in the cell C#(nrowj,ncolj). 

The dimensions of the cell objects matrix do not change over time. The number of columns of 
the animal objects matrix may change at each time step because of births and deaths. The newborn 
objects are added as last columns of the matrix, while the dead objects (with remove = 1) are 
deleted and the list of animals is updated. Thus, at time n an animal may have index j in the list, 
while at time n + 1 this index may be different. 

4.2 The mapping functions 
The time unit used in the model is 1 day. We simplify the simulations by assuming that a month 
has 30 days and an year has 360 days. 

The mapping functions describe the transition from matrices d(n) and C ( n )  to d(n + 1) and 
C ( n  + 1). The order in which the maps are executed is important and we are keeping to it in the 
following description. 

In this model the only random map is the one that controls the animals' movements between 
cells. 

(0) If at time n animal Ai has index j and removej = 0, then we define img( j )  as the function 
which calculates the new index, at time n + 1, of animal j .  Keeping in mind the way we do the 
rearrangement of the list, we find that i m g ( j )  = j -  the number of animals that died and had index 
less than j=img(j)  = j - &<j removek. 

(1) Cell population numbers 

NI  (n+l) 
popj(n + 1) = C dO(#(nrowi, ncoli) - j )  

i=l 

where &(z) is the delta function: &(a) = 1,0 otherwise. 

NI(n+l) 
mpopj(n+ 1) = JO(#(nrowi,ncoli) - j)dl(geni) 

i=l 

Nl(n+l) 
fpopj(n + 1) = Jo(#(nrowi,ncoli) - j)62(geni) 

i=l 
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(2) Aging 
This is the simplest mapping from time n to time n + 1. 

agei,,(j) (n + 1) = agej(n) + 1. 

(3) The energetic budgets 
To model the effect of food and starvation on survival, we use the variables enbudgetj(n),j = 

1, ..., N1(n) .  

enbudgetirng(j)(n+ 1) = enbudget(n) - 1, i f~eL7#(nTowj(n),ncozj(n))  < ~~~~~~P#(nTowj(n),ncozj(n)) 
0 therwise, 

enbudgeti,,(j) (n + 1) = enbudget(n) + 1, 

if agei,,(j) 2 M A  and enbudget(n) < M E B  or if ageimg(j) < M A  and enbudget(n) < J E B .  
That is, if the animal feeds, it increases its energy store (unless it is at the maximum) and if it 

cannot feed because of lack of enough resource, its energy store drops. Additionally, there is a limit 
to the energy an animal can store, which is smaller for the juveniles. 

(4) Survival or removal 
removej(n+l) = 0 i fagej(n+l) < LE and ifenbudgetj(n+l) > 0. Otherwise, remmej(n+l)  = 

(5)  Status change 
The variable statj changes its value as follows. 
statimg(j) (n + 1) =resident, if agei,,(j) (n + 1) < M A .  
stati,,(j) (n + 1) =wanderer, if agei,,(j) (n + 1) = MA.  
If agei,,(j) (n + 1) > M A  and if statj(n)=wanderer, then 

1. That is, an animal dies if its energy budget became 0 or if its age reached the life expectancy. 

 tat^,^(^) (n + 1) = resident, 

if genj(n> = 1 (male) and mpop#(nrowi,g(j)(n+l),ncozi,g(j)(n+l)) - < 1  
or if genj (n) = 2 (female) and fPoP#(nTowimg(j) (n+l),nc0Zimg(j) (n+l)) I 1. 
Otherwise, statimg(j) (n + 1) = wanderer. 
If ageimg(j)(n + 1) > M A  and if statj(n)=resident, then 
statimg(j) (n + 1) =wanderer if weg(#(nrouti,,(j) (n), ncoZi,,,(j) (n)) = 0. Otherwise statimg(j) (n + 
1) = resident. 

In plain words, all juveniles are residents until they reach adult age, when they become wanderers. 
Adults who were wanderers can become residents if they find themselves in a cell with no other 
individuals of the same gender, otherwise they continue to wander. Thus, each cell can contain only 
one pair of adult residents (plus their immediate offspring) and many wanderers. Adult residents 
become wanderers if the cell gets overgrazed and has no vegetation left. 

Wanderers do not contribute to the population growth but use the resource, thus controlling the 
population in certain bounds. 
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(6) Births 

birthj(n) = 0 if mod 3 6 o ( n )  > 300 or < 30 
or if removej (n)  # 0 
or if genderj(n) # 2 

or if ugej(n) 5 MA 
or if s ta t j (n )  = wanderer 

or if enbudgetj < M e a n E B ;  

or if mpop#(nro~j(n),~cozj(n)) = 0 

1, otherwise. 

(4.3) 

In other words, a female vole gives birth only in the months between February and October 
and if it is an adult resident, with energetic budget not less than M e a n E B  and if a male animal is 
present in the cell. 

(7) The time between pregnancies I-. 

q m g ( j )  (n + I) =.j(n) + 1 if birthimg(j) (n + 1) = 0 
0, otherwise. (4-4) 

(8) Location change 
Wanderers change their location at each time moment until (if) they become residents. 
If (nrowj(n),ncoZj(n)) are the coordinates of the location of animal Aj at time n, then the 8 

surrounding cells have pairs of coordinates (nrowi  - 1, ncoZj - l), ..., (nrowj + 1, ncoZj + 1). 
Let C#(nrow,-l,nco~j-l), ..., C~(nrowj+l ,ncol j+l)  be the 8 neighboring cells. To ease notation, let 

us denote them by Cj(q ,  ..., Cj(8). 
If s ta t j (n )  = resident, then 

nrowimg(j) (n + 1) = nrowj  (n), ncoZimg(j) (n + 1) = ncoZj(n); 

if stat j  (n) = wanderer, then (nrowimg(j) (n + l), ncoZimg(j) (n + 1)) takes randomly one of those pair 
values (nrmj - 1,ncol j  - l), ..., (nrowj  + 1,ncoZj + 1) for which vegj(k) > 0. That is, when an 
animal needs to change its location, it chooses in a random manner to move in one of the directions 
with available food resource. 

(9) Vegetation growth and depletion 
The variables vegi(n), i = 1, ..., N2 are transformed into vegi(n + l),i = 1, ..., N2 as follows 

vegi(n + 1) = vegi(n) + r(n) - popi(n).DFI, 

where r(n) is the change in the amount of green vegetation between days n and n+l due to growth or 
death (drying out, freezing, etc.) caused by climatic conditions. r(n) is positive in time periods when 
the vegetation growth is larger than decay and negative otherwise. It is a forcing function similar to 
the ones used in continuous population models with climatic forcing. We use an artificially generated 
30 year time series of biomass (shown on Figure 1) to model the monthly amount of vegetation per 
square meter S(k) in month I C ,  granted the average temperature and precipitation data for this month 
are known. Assuming that the rate of vegetation growth does not depend on whether it is being 
grazed, that a month has 30 days and that vegetation grows with the same rate within a month, 
then 

r(n) = (urea of the  cell) x {S(k + 1) - 6(k)}/30, 
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where k = [&I and d(0) is the initial per square meter amount of vegetation. 
(10) Genders. Naturally, 

(10) Finally, p j  (n) is an externally defined function. 
genimg(j) (n + 1) = genj (n) - 

Mass of aboveground vegetation in g per sq.m. 
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Figure 1. Plot of artificially generated green vegetation in g/sq.m. 
Time is in days. 

5 Simulations 
All calculations simulate a “fenced plot”, i.e. no animals are allowed to enter or leave the site. 

5.1 
In the simulations we use numeric values of the parameters close to the ones reported in the literature 
(compare with section 3). The area of each cell is 900 square meters (30m by 30m cells), roughly 
corresponding to the prairie vole’s HR size. The initial time is set as January 1 1960. The l i e  
expectancy LE was varied accross simulations between 90 and 140 days (which is close to the 
maximum observed life span of voles born in winter). Additionally, GT = 21 days, M A  = 30 days 
as described by real data. The litter size LS is taken to be equal to 2, a twice lower value than 
the number of newborns, to account for a high mortality of offspring reported in many publications. 
D F I  = 10 is also taken at a lower value than the one known for adult voles, because it is an 
average value for both adults and juveniles. The controlling energetic budget values were taken 
as M E B  = 20; MeanEB = 15; J E B  = 2. These are rather arbitrary because of lack of data. 
M E B  = 20 has the meaning that an adult vole would die after 10 days of starvation, while a 
juvenile would endure only 2 days of starvation. 

Parameter values and initial distributions 
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Initially all cells were assumed to contain the same amount of vegetation (no spatial heterogeneity 
was assumed). 

5.2 Results 
A legitimate question that arises is how to compare the simulation results. We use the term persis- 
tence in the sense of “time to extinction”. Our simulations were done for a 30 year period of time. 
We cannot say if the populations that persisted for 30 years would go extinct in a longer period of 
time or if they will persist for ever. This is a very interesting question but unfortunately we do not 
have the theoretical framework that would allow us to find an answer. 

General observations. 
We did a variety of simulations with the model. The initial distribution were either randomly 

generated over the whole plot or were modelled as small area sources. All initial distributions 
consisted of wandering adults. The simulation results share some similarities as follows. 

As expected, vole population densities (the total population divided by the area in hectares) 
fell drastically in the winter months due to overgrazing and to the lack of breeding. Populations 
reached maximum densities in the end of the autumn (usually in November) and minimum densities 
in February- March, similar to that reported in section 3. 

The time series of the vole densities showed annual peaks (probably due to the seasonality of the 
vegetation data) and multi-annual fluctuations with peaks separated by periods ranging between 
2 to 5 years, similar to what is described in section 6. Figure 2a shows a typical time series of a 
120 x 120 cells simulation with an initial distribution of 348 animals aggregated in a small amount 
of cells. Similar time series patterns are seen on Figure 4b and Figure 3b (the non-extinct case). 
Figure 4b shows an interesting observation: the peaks in density appear in the same years for the 
three plots. That is, the amplitude of fluctuations depends on the size of the plot but the periodicity 
does not. This is comparable to the mentioned in section 3 observations that the periodicity of 
fluctuations does not depend on the quality of the plot. Our simulations show that the peaks in 
population density do not coincide with the peaks in the resource density. One can hypothesise that 
the multi-annual fluctuations are due to the combined effect of the oscillatory vegetation forcing and 
the intrinsic population density oscillations due to the periodicity of breeding. 

Total population of voles per ha 
7Or 

6 0 :  

50  

I 50 1 0 0  1 5 0  200 250 3 0 0  3 5 0  
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Figure 2a. Annual and multi-annual population density fluctuations. 
See text for details. 

Further, it is important to note that the maximum densities did not exceed 200 per ha, in the 
expected limits for this species in a closed area. 

Specific spatial patterns similar to wave motion formed in all simulations. Simulations starting 
with uniform random distribution over the whole plot showed the formation of wave patterns after 
the first year when separate individuals survived and started reproducing and dispersing randomly. 
The random dispersal in all directions led to the formation of oval populated regions with highest 
density in the center of the ovals. The subsequent overgrazing led to the removal of animals from the 
central part of the ovals thus forming rings of nonzero density, which we refer to as ‘‘ waves”. The 
waves further expanded and their central parts were removed as results of overgarzing and deaths. 
The waves hit one another subsequently forming various patterns of irregular structure. Figure 2b 
shows typical patterns illustrating this observation. 

Figure 2b. Formation of wave - like patterns from a uniformly random 
distribution on a spatial plot with a removed central region. The top 
left graph corresponds to the initial distribution in January of year I, 
the second on top corresponds to December of year 1, the bottom left 
- to November of the second year and the bottom right - to December 
of the second year. 

Optimal conditions for survival. 
The survival of the population depended on the initial distribution and on the parameters we 

varied. If the initial distribution density was low (0-2 animals per cell) and especially if the inhabited 
cells were sparse, the population died out because of a low number of mating pairs formed and low 
amount of offspring throughout the breeding season. Additionally, if the initial density was high, 
the population amassed very high densities in the subsequent years, overgrazed the whole region 
and perished (compare with experimental results described in section 3, [24]). At high and low 
initial densities the persistence of the population showed high sensitivity to initial conditions in the 
sense that different initial distributions with similar total population numbers developed different 
outcomes; the population sometimes persihed after a few years, while in other cases it persisted for 
the 30 year test period. Overall, one can hypothesise the existence of an optimal range of initial 
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population sizes that guarantee the persistence of the population. 

The importance of area size. 
In one simulation we compared 3 “fenced plots” of 200, 300 and 400 cells respectively. We 

started the simulations with the same initial distribution of voles which was randomly generated 
in the smallest plot. The plots are contained into one another, with the bottom left corner being 
common for all plots. That is, the 300 plot was five ninths empty and the 400 plot was three quarters 
empty in the beginning. The parameters of the model were the same as described in the previous 
section with the life expectancy being 120 days. As an illustration, Figure 3a shows the density 
distributions in the largest plot in December of the second, tenth and fifteenth year. 

Figure 3a. Spatial distribution of vole densities in a 400 x 400 plot 
in months 24, 120, 180 (from left to right). See text. 

The vole population on the smallest plot went extinct in about 180 months, on the second plot 
- in 269 months, while on the third plot it persisted during the whole simulation period of 360 
months. Figure 3b demonstrates the time series of the total population density per ha. The dashed 
l i e  corresponds to population density on the largest plot, the dotted line - to the middle-sized plot 
and the continuous line - to the smallest plot. 
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Figure 3b. Comparison of the length of population persistence on 
three plots of 3600 ha, 8100 ha and 14400 ha. See text for details. 

The smaller the plot, the higher the maximum and average density per ha and the larger the stan- 
dart deviation. The latter measures the instability caused by oscillations. The maximum densities 
for the 200 x 200,300 and 400 plots were 100’82 and 46 correspondingly while the average densities 
were correspondingly 12, 6, 3 and the standard deviations were 17%, 11%, lo%, respectively. 

On the smaller plots the population extinction is caused by severe overgrazing of most of the plot 
and subsequent starvation during the winter months. On the largest plot overgrazing does happen 
locally, while there are vast areas with sufficient vegetation remaining. 

We did similar simulations with other sizes of “fenced plots” and other initial distributions and 
we observed similar monotonous dependence of area size and length of population persistence. 

The  importance of dispersal and predation. 
Our simulations model a fenced habitat of a single population. The lack of dispersal outside 

the area causes the appearance of very high population densities and subsequent overgrazing. The 
insufficiency of vegetation combined with the lack of breeding in the winter months causes severe 
population crashes and may lead to rapid extinction. We already noted that extinction was de- 
pendent on area size, initial densities, life expectancy, etc. Any factor that contributes to lowering 
population density, such as dispersal through the boundaries of the habitat and predation should 
act in the direction of increasing the population’s chance of survival. 

Ragmentat ion is not  necessarily a bad thing. 
We compared the results of simulations on cells with various sizes with identical initial distribu- 

tions but with various types of “obstacles”. The obstacles are parts of the landscape unaccessible 
(or avoided) by the animals. Here we discuss the comparison between two simulations, one with- 
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out obstacles and the other in the form of a “checkerboard landscape”, see Figure 4a for a visual 
represent ation. 

Figure 4a. Density distributions of voles in different points of time in 
a checkerboard habitat. The overall wavelike progression of density 
is preserved. 

The initial distribution simulated an experiment in which 42 adult voles were released into the 
plot in its bottom left corner. Interestingly, the spatial wave-like progression of density distribution 
was preserved as seen on Figure 4a. The patchiness of the landscape decreased the amplitude 
between the lowest and highest population per ha densities. We compare three simulations with 
same initial distributions: on a 200 x 200, 144 x 144 and checkerboard plots. The 144 x 144 plot 
has almost the same area size as the total area of all accessible patches of the checkerboard plot. 
We compare these two plots to study to the effect of patchiness on population persistence. The 
population densities in the three plots are represented on Figure 4b, with a solid, dotted and dashed 
line corresponding to the 144 x 144, checkerboard and 200 x 200 plots. 
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Figure 4b. Comparison of the length of population persistence on 
three plots of 1866 ha, 1872 ha and 3600 ha. See text for details. 

The population on the 144 x 144 plot went extinct near the end of the 30 year period, while the 
populations in the other two plots persisted till the end. 

The maximum population densities per ha were 187, 149 and 153, while the average population 
densities per ha were 29, 21, 25 for the 144 x 144, checkerboard and 200 x 200 plot respectively. The 
standart deviation was 7%, 6% and 7%. This simulation shows that the checkerboard fragmentation 
has, in fact, a beneficial effect on the persistence of the population by reducing the maximum and 
average density and the amplitude of oscillations. 

The results of various simulations with obstacles seem to confirm the conclusion that fragmen- 
tation does not have a clearly expressed negative effect on population persistence. Our results show 
that it is rather the decrease in the size of the inhabited population area that does have a clearly 
expressed effect on population persistence. 
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Figure 2. Formation of wave - like patterns eon 
plot with a removed central region. The top left 
January of year I, the second on top corresponds 
November of the second year and the bottom r ig  

I a uniformly random distribution on a spatial 
graph corresponds to the initial distribution in 
; to December of year 1, the bottom left -to 
$t - to December of the second year. 






